首页> 外文OA文献 >On transformations preserving the basis conditions of a spin structure group in four-dimensional super string theory in free fermionic formulation
【2h】

On transformations preserving the basis conditions of a spin structure group in four-dimensional super string theory in free fermionic formulation

机译:关于自由铁离子配方中二维超弦理论中自旋结构基团的基本条件的保留变换

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Let \Xi stand for a finite abelian spin structure group of four-dimensional superstring theory in free fermionic formulation whose elements are 64-dimensional vectors (spin structure vectors) with rational entries belonging to \rbrack -1,\, 1\rbrack and the group operation is the mod\, \, 2 entry by entry summation \oplus of these vectors. Let B=\{b_i,\, i= 1,\cdots ,k+1\} be a set of spin structure vectors such that b_i have only entries 0 and 1 for any \, i= 1,\cdots ,k, while b_{k+1} is allowed to have any rational entries belonging to \rbrack -1,\, 1\rbrack with even N_{k+1}, where N_{k+1} stands for the least positive integer such that N_{k+1}b_{k+1}= 0\,mod\,2. Let B be a basis of \Xi, i.e., let B generate \Xi, and let \Lambda_{m, n} stand for the transformation of B which replaces b_n by b_m\oplus b_n for any m \ne k+1, n \ne 1, m \ne n. We prove that if B satisfies the axioms for a basis of spin structure group \Xi, then B'=\Lambda_{m, n}B also satisfies the axioms. Since the transformations \Lambda_{m,n} for different m and n generate all nondegenerate transformations of the basis B that preserve the vector b_1 and a single vector b_{k+1} with general rational entries, we conclude that the axioms are conditions for the whole group \Xi and not just conditions for a particular choice of its basis. Hence, these transformations generate the discrete symmetry group of four-dimensional superstring models in free fermionic formulation.
机译:令\ Xi代表自由费米子公式中的四维超弦论的有限阿贝尔自旋结构群,其元素是64维向量(自旋结构向量),其合理项分别属于\ rbrack -1,\,1 \ rbrack和组运算是这些向量的mod \,\,2个条目逐项求和\ oplus。令B = \ {b_i,\,i = 1,\ cdots,k + 1 \}是一组自旋结构矢量,这样b_i对于任何\,i = 1,\ cdots,k,都只有条目0和1。而b_ {k + 1}允许具有\ rbrack -1,\,1 \ rbrack的任何有理数条目,偶数为N_ {k + 1},其中N_ {k + 1}表示最小正整数,使得N_ {k + 1} b_ {k + 1} = 0 \,mod \,2。令B为\ Xi的基础,即让B生成\ Xi,并令\ Lambda_ {m,n}代表B的变换,其中B对任何m \ ne k + 1,n都用b_m \ oplus b_n替换b_n \ ne 1,m \ ne n。我们证明如果B以自旋结构组\ Xi为基础满足公理,则B'= \ Lambda_ {m,n} B也满足公理。由于不同m和n的变换\ Lambda_ {m,n}生成了基数B的所有非简并变换,这些变换保留了具有一般有理项的向量b_1和单个向量b_ {k + 1},因此我们得出结论,公理是条件对于整个集团来说,X不仅是为其基础进行特定选择的条件。因此,这些转换在自由铁离子制剂中产生了离散的对称的二维超弦模型组。

著录项

  • 作者

    Kholodnyi, V A;

  • 作者单位
  • 年度 1994
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号